Bacterial flagella grow through an injection-diffusion mechanism
نویسندگان
چکیده
The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.
منابع مشابه
Ratcheted diffusion transport through crowded nanochannels
The problem of transport through nanochannels is one of the major questions in cell biology, with a wide range of applications. In this paper we discuss the process of spontaneous translocation of molecules (Brownian particles) by ratcheted diffusion: a problem relevant for protein translocation along bacterial flagella or injectosome complex, or DNA translocation by bacteriophages. We use mole...
متن کاملThe mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution.
The rod component of the bacterial flagellum polymerizes from the inner membrane across the periplasmic space and stops at a length of 25 nm at the outer membrane. Bushing structures, the P- and L-rings, polymerize around the distal rod and form a pore in the outer membrane. The flagellar hook structure is then added to the distal rod growing outside the cell. Hook polymerization stops after th...
متن کاملEFFECTS OF TEMPERATURE AND AL-CONCENTRATION ON FORMATION MECHANISM OF AN ALUMINIDE COATING APPLIED ON SUPER ALLOY IN738LC THROUGH A SINGLE-STEP HIGH ACTIVITYGAS DIFFUSION PROCESS
Abstract: activity gas diffusion process has been investigated in this research. Effects of coating temperature and aluminumconcentration in powder mixture on formation mechanism were studied using optical and scanning electronmicroscopes, EDS and X-ray diffraction (XRD) techniques. For this purpose two different packs containing 1 and 2wt% aluminum powder, were used for coating the samples at ...
متن کاملGAME OF COORDINATION FOR BACTERIAL PATTERN FORMATION: A FINITE AUTOMATA MODELLING
In this paper, we use game theory to describe the emergence of self-organization and consequent pattern formation through communicative cooperation in Bacillus subtilis colonies. The emergence of cooperative regime is modelled as an n-player Assurance game, with the bacterial colonies as individual players. The game is played iteratively through cooperative communication, and mediated by exchan...
متن کاملBuilding a flagellum in biological outer space
Flagella, the rotary propellers on the surface of bacteria, present a paradigm for how cells build and operate complex molecular 'nanomachines'. Flagella grow at a constant rate to extend several times the length of the cell, and this is achieved by thousands of secreted structural subunits transiting through a central channel in the lengthening flagellum to incorporate into the nascent structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017